

PURPOSE

To explain the proper procedures for collecting a sample so as to prevent analytical results from being affected, by ensuring that sampling is representative, and is done according to accepted and valid techniques.

SCOPE

This document is available as a sampling guide to any employee or client of Integral Laboratories.

POLICY

It is the policy to advise personnel and clients of proper sampling techniques, s that representative samples are obtained.

PROCEDURE

NOTE:

- 1. Using the correct sample bottles is critical for some analyses (eg. Microbiological analyses). Please consult the laboratory if in doubt.
- 2. Capture as much information as possible for each sample. Environmental conditions (such as temperature, humidity, wind) sometimes assist in evaluating the validity of results.

1. MICROBIOLOGICAL CONSIDERATIONS

If the water to be sampled for bacteriological analysis contains residual chlorine, add 0.2ml of 10% sodium thiosulphate solution to a 250ml bottle (reduce volumes proportionately for smaller bottles) before sterilising. Alternatively, purchase bottles that already contain thiosulphate solution.
 (Sodium thiosulphate is already added to sterile containers obtained from the laboratories).

- When samples for bacteriological and chemical analysis are taken at the same point, collect the bacteriological sample FIRST to avoid contamination of the sampling point.
- Always keep the bottle closed, in a cool place and in a clean condition prior to sampling.
- Wear gloves (when possible), or wash hands thoroughly before taking each sample.
- Avoid hand contact with the neck of the bottle, or the inside of the lid of the bottle.
- Do not rinse the bacteriological sample bottles prior to sampling.
- When sampling from a tap or point in the distribution system, clean the tap or valve with methanol, 100mg/l sodium hypochlorite solution, or flame sterilise with a blowtorch (be considerate of private property prior to undertaking flame sterilisation).
- After sampling, place sample bottles in a cooler box containing ice or ice packs to keep samples below 10°C.
- Samples must be delivered to the laboratory as soon as possible; ideally for analysis to be started within 24 hours of sampling.

Please keep in mind laboratory operating hours when planning a sampling day and time.

- Attach a label containing the following information onto the sample bottle:
 - Name of Sample / Sampling point
 - Sampling date

INTEGRA

- Sampling time
- Name of sampler
- Chlorine results where applicable

Sampling

2. SAMPLING FROM A TAP OR VALVE IN A DISTRIBUTION OR POINT-OF-USE SYSTEM

- Sterilise tap or valve with methanol, hypochlorite or flame.
- Open the tap and let the water run to waste for at least 3 minutes.

(Be considerate of the scarcity of water.)

- Remove the cap from the sample bottle, taking care not to contaminate the inner surface of the cap or the neck of the bottle.
- Fill the bottle to the brim, to minimise any potential oxygen / head space that remains in the bottle.
 When sampling for *microbiological purposes*, DO NOT RINSE the bottle.
 When sampling for *chemical purposes*, rinse the bottle with the water source to be sampled.
- Label the bottle and place in a cooled container (preferably a cooler box with ice or ice packs).
- Rinse the sample bottles for Chemistry at least twice with the sample, add any preservative necessary, and fill the sample bottle leaving a 25mm gap to facilitate mixing.
- Close the tap.

3. SAMPLING FROM A RIVER, STREAM, LAKE, DAM OR RESERVOIR

- At the sampling point, remove cap of sample bottle, taking care to prevent contamination of lid and neck.
- Hold the bottle with the hand near the base, plunge the bottle neck downward below the water surface, ensuring that the neck is directed towards the current.
- Turn the bottle until the neck points slightly upwards with the neck directed towards the current.
- Pushing the bottle forward horizontally away from the hand can create an artificial current.

- Fill the sample bottle to the brim, to minimise any potential oxygen / head space that remains in the bottle. When sampling for *microbiological purposes*, DO NOT RINSE the bottle.
 - When sampling for *chemical purposes*, rinse the bottle with the water source to be sampled.
- Attach the label as for sampling from a tap.
- Place in cooler box containing ice or ice packs.

4. SAMPLING FROM SEWAGE TREATMENT PLANTS

- In the event of a grab sample being taken, sample as per sampling from a river, stream, lake, dam or reservoir above.
- Always wear gloves when sampling.
- For areas that cannot be reached by hand, attach a sample bottle or clean container to a rope or sample container holder, and lower this into the sampling point. Rinse the container holder and container thoroughly before sampling next point.
- Wash hands thoroughly after sampling.

5. SAMPLING FROM A BOREHOLE OR A WELL

For boreholes and wells, it is preferred that sampling be done from the borehole pump outlet rather than directly from the borehole or well.

- Allow the water to pump to waste for 5-10 minutes before taking the sample.
- For new boreholes, purge the borehole for at least 2hours before sampling.

- Sample from the outlet as if sampling from a Tap (see above).
- Where there is no pump available, secure a weight under the sample bottle and lower the bottle into the borehole or well until the bottle is submerged.
- Fill the bottle the brim, to minimise any potential oxygen / head space that remains in the bottle.
 When sampling for *microbiological* purposes, DO NOT RINSE the bottle.
 When sampling for *chemical* purposes, rinse the bottle with the water source to be sampled.
- Raise the bottle to the surface, taking care that touching the walls of the borehole or well does not contaminate the bottle.
- After capping and labelling, store the bottle in a cooler box with ice or ice packs.

NOTE: DETAILED PURGING INFORMATION CAN BE OBTAINED FROM REFERENCE 2 BELOW.

REFERENCES

INTEGRA

 Standard Methods for the Examination of Water and Wastewater, Clesceri, Greenberg, Eaton, 20th edition, 1998, Collection and Preservation of Samples, 1060.

2. Quality of Domestic Water Supplies. Volume 2 Sampling Guide. WRC, DWAF, Dept of Health, 2000